On The Binary Quadratic Equation $x^{2}-18 x y+y^{2}+32 x=0$

A.Vijayasankar
Assistant Professor, Department of Mathematics, National College, Trichy-620001, Tamilnadu, India.

M.A.Gopalan

Professor, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu, India.

V.Krithika

Research Scholar, Dept. of Mathematics, National College, Trichy-620001, Tamilnadu, India.

Abstract - The binary quadratic equation $x^{2}-18 x y+y^{2}+32 x=0$ represents a hyperbola. In this paper we obtain a sequence of its integral solutions and present a few interesting relations among them.
Index Terms - Binary quadratic, Hyperbola, Integral solutions, Parabola, Pell equation.

2010 Mathematics subject classification:11D09.

1. INTRODUCTION

The binary quadratic Diophantine equations (both homogeneous and non-homogeneous) are rich in variety [1-5]. In [6-12], the binary quadratic non-homogeneous equations representing hyperbolas respectively are studied for their nonzero integral solutions. These results have motivated us to search for infinitely many non-zero integral solutions of another interesting binary quadratic equation given by $x^{2}-18 x y+y^{2}+32 x=0$. The recurrence relations satisfied by the solutions x and y are given. Also a few interesting properties among the solutions are exhibited.

2. METHOD OF ANALYSIS

The Diophantine equation representing the binary quadratic equation to be solved for its non-zero distinct integral solution is

$$
\begin{equation*}
x^{2}-18 x y+y^{2}+32 x=0 \tag{1}
\end{equation*}
$$

Substituting the linear transformations
$x=u+v, \quad y=u-v$
in (1), we have

$$
\begin{equation*}
5 v^{2}-4 u^{2}+8(u+v)=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
V^{2}=20 U^{2}-4 \tag{4}
\end{equation*}
$$

where $V=5 v+4$ and $U=u-1$
The least positive integer solution of (4) is

$$
U_{0}=1, V_{0}=4
$$

Now, to find the other solutions of (4), consider the pellian equation

$$
\begin{equation*}
V^{2}=20 U^{2}+1 \tag{6}
\end{equation*}
$$

whose fundamental solution is

$$
\left(\tilde{U}_{0}, \tilde{V}_{0}\right)=(2,9)
$$

The other solutions of (6) can be derived from the relations

$$
\begin{aligned}
\tilde{V}_{n} & =\frac{f_{n}}{2} \\
\tilde{U}_{n} & =\frac{g_{n}}{2 \sqrt{20}}
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{n}=(9+2 \sqrt{20})^{n+1}+(9-2 \sqrt{20})^{n+1} \\
& g_{n}=(9+2 \sqrt{20})^{n+1}-(9-2 \sqrt{20})^{n+1}
\end{aligned}
$$

Applying Brahmagupta lemma between $\left(U_{0}, V_{0}\right)$ and $\left(\tilde{U}_{n}, \tilde{V}_{n}\right)$, the other solutions of (4) can be obtained from the relation

By performing some simplifications, we obtain

$$
\begin{align*}
& U_{n+1}=\frac{f_{n}}{2}+\frac{g_{n}}{\sqrt{5}} \tag{7}\\
& V_{n+1}=2 f_{n}+\frac{5 g_{n}}{\sqrt{5}}
\end{align*}
$$

By substituting equation (7) in (5) and using (2), the non-zero distinct integer solutions of (1) are obtained as follows

$$
\begin{aligned}
& x_{n+1}=\frac{1}{10}\left[9 f_{n}+4 \sqrt{5} g_{n}\right] \\
& y_{n+1}=\frac{1}{10}\left[f_{n}+18\right], n=-1,1,3, \ldots
\end{aligned}
$$

The recurrence relations for x_{n+1}, y_{n+1} are respectively

$$
\begin{aligned}
& x_{n+5}-322 x_{n+3}+x_{n+1}=-64 \\
& y_{n+5}-322 y_{n+3}+y_{n+1}=-576
\end{aligned}
$$

Some numerical examples of x and y satisfying (1) are given in the table 1 below:

Table-1: Numerical Examples

n	x_{n+1}	y_{n+1}
-1	2	2
1	578	34
3	186050	10370
5	59907458	3338530

From the above table, we observe some interesting relations among the solutions which are presented below:

1. x_{n+1} and y_{n+1} both are even
2. Relations among the solutions:

* $\quad 72 x_{n+5}+4608=23184 x_{n+3}-72 x_{n+1}$
* $\quad x_{n+3}+32=5796 y_{n+3}-x_{n+1}$
* $\quad 323 x_{n+1}-32=18 y_{n+1}+x_{n+3}$
* $\quad 18 x_{n+1}+576=323 y_{n+3}-y_{n+5}$
* $\quad 18 y_{n+1}+32=323 x_{n+1}-x_{n+3}$
$\stackrel{x_{n+5}}{*}+10368=5796 y_{n+3}-323 x_{n+1}$
$\dot{*} \quad 323 x_{n+5}+20704=104005 x_{n+3}-18 y_{n+1}$
$\star \quad 18 x_{n+3}=y_{n+3}+y_{n+5}$
* $\quad 18 y_{n+3}-32=x_{n+1}+x_{n+3}$
$\star \quad y_{n+1}=18 x_{n+1}-y_{n+3}$
* $323 y_{n+3}-576=18 x_{n+3}-y_{n+1}$
* $\quad 18 x_{n+5}+576=323 y_{n+5}-y_{n+3}$
* $\quad 18 y_{n+5}+32=323 x_{n+3}-x_{n+1}$
* $\quad y_{n+5}+576=323 y_{n+3}-18 x_{n+1}$
* $\quad 323 y_{n+5}+576=5796 x_{n+3}-y_{n+1}$
* $\quad y_{n+1}+576=322 y_{n+3}-y_{n+5}$
* $\quad \frac{1}{18}\binom{3230 x_{3 n+3}-10 x_{3 n+5}}{-644}+$
is a

$$
3\left[(9+2 \sqrt{20})^{n+1}+(9-2 \sqrt{20})^{n+1}\right]
$$

cubical integer.
3. Each of the following expressions represents a nasty number:

$$
\begin{aligned}
& * \quad \frac{1}{3}\left[3230 x_{2 n+2}-10 x_{2 n+4}-608\right] \\
& * \quad \frac{1}{966}\left[1040050 x_{2 n+2}-10 x_{2 n+6}-196416\right]
\end{aligned}
$$

$$
* \quad \frac{6}{323}\left[57960 x_{2 n+2}-10 y_{2 n+6}-10928\right]
$$

$$
* \quad 1080 x_{2 n+2}-60 y_{2 n+4}-96
$$

$$
\div \quad \frac{1}{12}\left[4160200 x_{2 n+4}-1290 x_{2 n+6}-829312\right]
$$

$$
\star \quad 60 y_{2 n+2}-96
$$

$$
* \quad \frac{3}{2}\left[1290 y_{2 n+4}-720 x_{2 n+4}-23120\right]
$$

$$
\begin{aligned}
& \div \quad \frac{3}{646}\left[4160200 y_{2 n+4}-720 x_{2 n+6}-7490800\right] \\
& \div \quad \frac{3}{2}\left[231840 x_{2 n+4}-12920 y_{2 n+6}-23104\right] \\
& \div 19320 y_{2 n+4}-60 y_{2 n+6}-34656
\end{aligned}
$$

* $\frac{3}{2}\left[231840 x_{2 n+6}-4160200 y_{2 n+6}+7442000\right]$

3. OBSERVATIONS

I. Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of hyperbolas which are presented in the Table 2 below.

Table-2: Hyperbolas

S.No:	Hyperbola	$\left(X_{n}, Y_{n}\right)$
1.	$80 Y_{n}^{2}-81 X_{n}^{2}=103680$	$\left(3210 x_{n+1}-10 x_{n+3}-640,3230 x_{n+1}-10 x_{n+3}-644\right)$
2.	$\begin{aligned} 2073680 Y_{n}^{2} & -2099601 X_{n}^{2} \\ & =2.786496385 * 10^{14} \end{aligned}$	$\binom{1033610 x_{n+1}-10 x_{n+5}-206720}{,1040050 x_{n+1}-10 x_{n+5}-208008}$
3.	$80 Y_{n}^{2}-X_{n}^{2}=320$	$\left(1610 x_{n+1}-90 y_{n+3}-160,180 x_{n+1}-10 y_{n+3}-18\right)$
4.	$\begin{aligned} & 8346320 Y_{n}^{2}-104329 X_{n}^{2} \\ & =3.483052877 * 10^{12} \end{aligned}$	$\binom{518410 x_{n+1}-90 y_{n+5}-103520}{57960 x_{n+1}-10 y_{n+5}-11574}$
5.	$5 Y_{n}^{2}-X_{n}^{2}=103680$	$\binom{9302490 x_{n+3}-28890 x_{n+5}-1854720}{,4160200 x_{n+3}-1290 x_{n+5}-829456}$
6.	$8346320 Y_{n}^{2}-X_{n}^{2}=33385280$	$\left(10 x_{n+3}-28890 y_{n+1}+52000,10 y_{n+1}-18\right)$
7.	$5 Y_{n}^{2}-X_{n}^{2}=320$	$\begin{aligned} & \binom{1610 x_{n+3}-28890 y_{n+3}+51680,}{720 x_{n+3}-12920 y_{n+3}+23112} \\ & \binom{518410 x_{n+3}-28890 y_{n+5}-51680,}{231840 x_{n+3}-12920 y_{n+5}-23112} \end{aligned}$
8.	$\begin{array}{r} 8.65363202 * 10^{11} Y_{n}^{2}-X_{n}^{2} \\ =3.461452808 * 10^{12} \end{array}$	$\left(10 x_{n+5}-9302490 y_{n+1}+16744480,10 y_{n+1}-18\right)$
9.	$5 Y_{n}^{2}-X_{n}^{2}=33385280$	$\binom{1610 x_{n+5}-9302490 y_{n+3}+16744160}{720 x_{n+5}-4160200 y_{n+3}+7488216}$
10.	$Y_{n}^{2}-X_{n}^{2}=64$	$\binom{518410 x_{n+5}-9302490 y_{n+5}+16640800}{231840 x_{n+5}-4160200 y_{n+5}+7441992}$

11.	$25920 Y_{n}^{2}-X_{n}^{2}=103680$	$\begin{gathered} \left(10 y_{n+3}-1610 y_{n+1}+2880,10 y_{n+1}-18\right) \\ \left(518410 y_{n+3}-1610 y_{n+5}-930240,3220 y_{n+3}-10 y_{n+5}-5778\right) \end{gathered}$
12.	$\begin{aligned} & 2687489280 Y_{n}^{2}-X_{n}^{2} \\ & =1.074995712 * 10^{10} \end{aligned}$	$\left(10 y_{n+5}-518410 y_{n+1}+933120,10 y_{n+1}-18\right)$

II. Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of parabolas which are presented in the Table 3 below.

Table-3: Parabolas

S.No:	Parabola	$\left(X_{n}, Y_{n}\right)$
1.	$90 X_{n}^{2}=160 Y_{n}-11520$	$\left(3210 x_{n+1}-10 x_{n+3}-640,3230 x_{2 n+2}-10 x_{2 n+4}-608\right)$
2.	$\begin{aligned} 1449 X_{n}^{2}= & 8294720 Y_{n} \\ & -1.923047885 * 10^{11} \end{aligned}$	$\binom{1033610 x_{n+1}-10 x_{n+5}-206720}{,1040050 x_{2 n+2}-10 x_{2 n+6}-196416}$
3.	$X_{n}^{2}=80 Y_{n}-320$	$\left(1610 x_{n+1}-90 y_{n+3}-160,180 x_{2 n+2}-10 y_{2 n+4}-16\right)$
4.	$X_{n}^{2}=25840 Y_{n}-33385280$	$\binom{518410 x_{n+1}-90 y_{n+5}-103520}{,57960 x_{2 n+2}-10 y_{2 n+6}-10928}$
5.	$X_{n}^{2}=360 Y_{n}-103680$	$\binom{9302490 x_{n+3}-28890 x_{n+5}-1854720}{,4160200 x_{2 n+4}-1290 x_{2 n+6}-829312}$
6.	$X_{n}^{2}=8346320 Y_{n}-33385280$	$\left(10 x_{n+3}-28890 y_{n+1}+52000,10 y_{2 n+2}-16\right)$
7.	$X_{n}^{2}=-20 Y_{n}-320$	$\binom{1610 x_{n+3}-28890 y_{n+3}+51680}{720 x_{2 n+4}-12920 y_{2 n+4}+23120}$
8.	$X_{n}^{2}=20 Y_{n}-320$	$\binom{518410 x_{n+3}-28890 y_{n+5}-51680}{,231840 x_{2 n+4}-12920 y_{2 n+6}-23104}$
9.	$\begin{aligned} & X_{n}^{2}=8.65363202 * 10^{11} Y_{n} \\ & -3.461452808 * 10^{12} \end{aligned}$	$\left(10 x_{n+5}-9302490 y_{n+1}+16744480,10 y_{2 n+2}-16\right)$
10.	$X_{n}^{2}=-6460 Y_{n}-33385280$	$\binom{1610 x_{n+5}-9302490 y_{n+3}+16744160}{720 x_{2 n+6}-4160200 y_{2 n+4}+7490800}$

11.	$X_{n}^{2}=4 Y_{n}-64$	$\binom{518410 x_{n+5}-9302490 y_{n+5}+16640800}{,231840 x_{2 n+6}-4160200 y_{2 n+6}+7442000}$
12.	$X_{n}^{2}=25920 Y_{n}-103680$	$\left(10 y_{n+3}-1610 y_{n+1}+2880,10 y_{2 n+2}-16\right)$
$\binom{518410 y_{n+3}-1610 y_{n+5}-930240}{,3220 y_{2 n+4}-10 y_{2 n+6}-5776}$		
13.	$X_{n}^{2}=2687489280 Y_{n}$ $-1.074995712 * 10^{10}$	$\left(10 y_{n+5}-518410 y_{n+1}+933120,10 y_{2 n+2}-16\right)$

4. REMARK

One may also solve (1) by treating it as a quadratic in y. In this case, the corresponding solutions of (1) are

$$
\begin{aligned}
& x_{n}=\frac{1}{10}\left[f_{n}+2\right] \\
& y_{n}=\frac{1}{10}\left[9 f_{n}+4 \sqrt{5} g_{n}+18\right], n=0,2,4, \ldots
\end{aligned}
$$

5. CONCLUSION

In this paper, we have made an attempt to obtain a complete set of non-trivial distinct solutions for the non-homogeneous binary quadratic equation. To conclude, one may search for other choices of solutions to the considered binary equation and further, quadratic equations with multi-variables.

REFERENCES

[1] Mollin RA, Anitha srinivasan. 2010 A note on the Negative pell Equation, International Journal of Algebra.; 4(19):919-922.
[2] Whitford EE. Some Solutions of the Pellian Equations $x^{2}-A y^{2}= \pm 4$ JSTOR: Annals of Mathematics, Second Series 1913-1914; 1:157-160.
[3] S. Ahmet Tekcan. Betw Gezer and Osman Bizim, 2007 "On the Integer Solutions of the Pell Equation $x^{2}-d y^{2}=2^{t}$ ", World Academy of Science, Engineering and Technology; 1:522-526.
[4] Ahmet Tekcan. 2008., The Pell Equation $x^{2}-\left(k^{2}-k\right) y^{2}=2^{t}$. World Academy of Science, Engineering and Technology; 19:697-701.
[5] Merve Guney. 2012 .,Of the Pell equations $x^{2}-\left(a^{2} b^{2}+2 b\right) y^{2}=2^{t}$, when $N \in(\pm 1, \pm 4)$, Mathematica Aterna; 2(7):629-638.
[6] V. Sangeetha, M.A. Gopalan, Manju Somanath. 2014,On the Integral Solutions of the pell equation $x^{2}=13 y^{2}-3^{t}$, International Journal of Applied Mathematical Research.; 3(1):58-61.
[7] M.A. Gopalan, G. Sumathi, S. Vidhayalakshmi. . 2014.,Observations on the hyperbola $x^{2}=19 y^{2}-3^{t}$, Scholars Journal of the Engineering and Technology; 2(2A): 152-155.
[8] M.A.Gopalan, S. Vidhyalakshmi, A. Kavitha. 2014, "On the Integral Solution of the Binary Quadratic Equation $x^{2}=15 y^{2}-11^{t}$ ", Scholars Journal of the Engineering andTechnology,; 2(2A). 156-158.
[9] S. Vidhyalakshmi, V. Krithika, K. Agalya. 2015., On the Negative Pell Equation, Proceedings of the National Conference on MATAM, , 4-9.
[10] K. Meena, M.A. Gopalan, R. Karthika. December 2015 "On the Negative Pell Equation $y^{2}=10 x^{2}-6 "$,International Journal of Multidisciplinary Research and Development, volume2; issue12;: 390392.
[11] M.A. Gopalan, S.Vidhyalakshmi, V. Pandichelvi, P. Sivakamasundari, C. Priyadharsini. 2016;., "On the Negative Pell Equation $y^{2}=45 x^{2}-11 "$, International Journal of pure Mathematical Science. volume-16: 30-36.
[12] K. Meena, S. Vidhyalakshmi, A. Rukmani. December 2015 "On the Negative Pell Equation $y^{2}=31 x^{2}-6 "$, Universe of Emerging Technologies and Science,;volume II, Issue XII: 1-4.

